skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kilic, Can"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A<sc>bstract</sc> We present a new class of interacting dark sector models that can address the Hubble tension. Interacting dark radiation (DR) has previously been put forward as a solution to the problem, but this proposal is disfavored by the high-ℓcosmic microwave background (CMB) data. We modify this basic framework by introducing a subcomponent of dark matter (DM) that interacts strongly with the DR, so that together they constitute a tightly coupled fluid at early times. We show that if this subcomponent decouples from the interacting DR during the CMB epoch, theℓmodes of the CMB that entered the horizon before decoupling are impacted differently from those that entered after, allowing a solution to the problem. We present a model that realizes this framework, which we dub “New Atomic Dark Matter”, or nuADaM, in which the interacting dark matter (iDM) subcomponent is composed of dark atoms, and dark “neutrinos” with long-range interactions contribute to the DR, hence the name of the model. This iDM subcomponent is acoustic at early times but decouples from the DR following dark recombination. In contrast to conventional atomic dark matter (ADM) models, the dark photon is part of a richer DR sector, which ensures that it continues to be self-interacting even after recombination. We show that this model admits a significantly larger value ofH0than ΛCDM when fit to CMB and BAO data, while maintaining a comparable goodness of fit. Once the SHOES data set is included, it provides a significantly better fit than ΛCDM. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  2. A<sc>bstract</sc> We perform a model-independent analysis of the dimension-six terms that are generated in the low energy effective theory when a hidden sector that communicates with the Standard Model (SM) through a specific portal operator is integrated out. We work within the Standard Model Effective Field Theory (SMEFT) framework and consider the Higgs, neutrino and hypercharge portals. We find that, for each portal, the forms of the leading dimension-six terms in the low-energy effective theory are fixed and independent of the dynamics in the hidden sector. For the Higgs portal, we find that two independent dimension-six terms are generated, one of which has a sign that, under certain conditions, is fixed by the requirement that the dynamics in the hidden sector be causal and unitary. In the case of the neutrino portal, for a single generation of SM fermions and assuming that the hidden sector does not violate lepton number, a unique dimension-six term is generated, which corresponds to a specific linear combination of operators in the Warsaw basis. For the hypercharge portal, a unique dimension-six term is generated, which again corresponds to a specific linear combination of operators in the Warsaw basis. For both the neutrino and hypercharge portals, under certain conditions, the signs of these terms are fixed by the requirement that the hidden sector be causal and unitary. We perform a global fit of these dimension-six terms to electroweak precision observables, Higgs measurements and diboson production data and determine the current bounds on their coefficients. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  3. A<sc>bstract</sc> We study a class of models in which the particle that constitutes dark matter arises as a composite state of a strongly coupled hidden sector. The hidden sector interacts with the Standard Model through the neutrino portal, allowing the relic abundance of dark matter to be set by annihilation into final states containing neutrinos. The coupling to the hidden sector also leads to the generation of neutrino masses through the inverse seesaw mechanism, with composite hidden sector states playing the role of the singlet neutrinos. We focus on the scenario in which the hidden sector is conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. We construct a holographic realization of this framework based on the Randall-Sundrum setup and explore the implications for experiments. We determine the current constraints on this scenario from direct and indirect detection, lepton flavor violation and collider experiments and explore the reach of future searches. We show that in the near future, direct detection experiments and searches forμ→econversion will be able to probe new parameter space. At colliders, dark matter can be produced in association with composite singlet neutrinos via Drell Yan processes or in weak decays of hadrons. We show that current searches at the Large Hadron Collider have only limited sensitivity to this new production channel and we comment on how the reconstruction of the singlet neutrinos can potentially expand the reach. 
    more » « less
  4. In the collider phenomenology of extensions of the Standard Model with partner particles, cascade decays occur generically, and they can be challenging to discover when the spectrum of new particles is compressed and the signal cross section is low. Achieving discovery-level significance and measuring the properties of the new particles appearing as intermediate states in the cascade decays is a longstanding problem, with analysis techniques for some decay topologies already optimized. We focus our attention on a benchmark decay topology with four final state particles where there is room for improvement, and where multidimensional analysis techniques have been shown to be effective in the past. Using machine learning techniques, we identify the optimal kinematic observables for discovery, spin determination and mass measurement. In agreement with past work, we confirm that the kinematic observable Δ4 is highly effective. We quantify the achievable accuracy for spin determination and for the precision for mass measurements as a function of the signal size. 
    more » « less
  5. We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces the H0 tension but does not provide any meaningful improvement of the S8 tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model, H0 can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version of CLASS that has been modified to analyze this model is publicly available at https://github.com/ManuelBuenAbad/class_spartacous. 
    more » « less
  6. Abstract We generalize the recently proposed Stepped Partially Acoustic Dark Matter (SPartAcous) model by including additional massless degrees of freedom in the dark radiation sector. We fit SPartAcous and its generalization against cosmological precision data from the cosmic microwave background, baryon acoustic oscillations, large-scale structure, supernovae type Ia, and Cepheid variables. We find that SPartAcous significantly reduces theH0tension but does not provide any meaningful improvement of theS8tension, while the generalized model succeeds in addressing both tensions, and provides a better fit than ΛCDM and other dark sector models proposed to address the same tensions. In the generalized model,H0can be raised to 71.4 km/s/Mpc (the 95% upper limit), reducing the tension, if the fitted data does not include the direct measurement from the SH0ES collaboration, and to 73.7 km/s/Mpc (95% upper limit) if it does. A version ofCLASSthat has been modified to analyze this model is publicly available athttps://github.com/ManuelBuenAbad/class_spartacous. 
    more » « less
  7. A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
    more » « less
  8. We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H0 and S8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
    more » « less
  9. A bstract Pixel tracklets, disappearing tracks reconstructed with only pixel hits, have proven to be a promising technique in LHC analyses to search for dark matter candidates at the LHC that belong to a nearly-degenerate electroweak multiplet. However, a Pseudo-Dirac electroweak doublet fermion, arguably the most interesting such possibility, has a shorter lifetime and therefore existing tracklet searches are less sensitive in this case. We assess the performance of a tracklet search optimized for shorter lifetimes by requiring only three pixel hits for the tracklet reconstruction, and by demanding an accompanying soft track for suppressing backgrounds. We estimate how far the sensitivity of existing searches can be extended into the region of parameter space with this optimized search. 
    more » « less